A Fully Discrete Theory for Linear Osmosis Filtering
نویسندگان
چکیده
Osmosis filters are based on drift–diffusion processes. They offer nontrivial steady states with a number of interesting applications. In this paper we present a fully discrete theory for linear osmosis filtering that follows the structure of Weickert’s discrete framework for diffusion filters. It regards the positive initial image as a vector and expresses its evolution in terms of iterative matrix–vector multiplications. The matrix differs from its diffusion counterpart by the fact that it is unsymmetric. We assume that it satisfies four properties: vanishing column sums, nonnegativity, irreducibility, and positive diagonal elements. Then the resulting filter class preserves the average grey value and the positivity of the solution. Using the Perron–Frobenius theory we prove that the process converges to the unique eigenvector of the iteration matrix that is positive and has the same average grey value as the initial image. We show that our theory is directly applicable to explicit and implicit finite difference discretisations. We establish a stability condition for the explicit scheme, and we prove that the implicit scheme is absolutely stable. Both schemes converge to a steady state that solves the discrete elliptic equation. This steady state can be reached efficiently when the implicit scheme is equipped with a BiCGStab solver.
منابع مشابه
A New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints
Most research on bilevel linear programming problem is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...
متن کاملFully fuzzy linear programming with inequality constraints
Fuzzy linear programming problem occur in many elds such as mathematical modeling, Control theory and Management sciences, etc. In this paper we focus on a kind of Linear Programming with fuzzy numbers and variables namely Fully Fuzzy Linear Programming (FFLP) problem, in which the constraints are in inequality forms. Then a new method is proposed to ne the fuzzy solution for solving (FFLP). Nu...
متن کاملSampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملPole Assignment Of Linear Discrete-Time Periodic Systems In Specified Discs Through State Feedback
The problem of pole assignment, also known as an eigenvalue assignment, in linear discrete-time periodic systems in discs was solved by a novel method which employs elementary similarity operations. The former methods tried to assign the points inside the unit circle while preserving the stability of the discrete time periodic system. Nevertheless, now we can obtain the location of eigenvalues ...
متن کاملH∞ Filtering for Discrete-Time Neural Networks System with Time- Varying Delay and Sensor Nonlinearities
The H∞ filtering problem for a class of discrete stochastic neural networks systems with time-varying delay and nonlinear sensor is investigated. By employing the Lyapunov stability theory and linear matrix inequality optimization approach, sufficient conditions to guarantee the filtering error systems asymptotically stable are provided. By setting on the lower and upper bounds of the discrete ...
متن کامل